Rapid regulated dense-core vesicle exocytosis requires the CAPS protein.

نویسندگان

  • M Rupnik
  • M Kreft
  • S K Sikdar
  • S Grilc
  • R Romih
  • G Zupancic
  • T F Martin
  • R Zorec
چکیده

Although many proteins essential for regulated neurotransmitter and peptide hormone secretion have been identified, little is understood about their precise roles at specific stages of the multistep pathway of exocytosis. To study the function of CAPS (Ca(2+)-dependent activator protein for secretion), a protein required for Ca(2+)-dependent exocytosis of dense-core vesicles, secretory responses in single rat melanotrophs were monitored by patch-clamp membrane capacitance measurements. Flash photolysis of caged Ca(2+) elicited biphasic capacitance increases consisting of rapid and slow components with distinct Ca(2+) dependencies. A threshold of approximately 10 microM Ca(2+) was required to trigger the slow component, while the rapid capacitance increase was recorded already at a intracellular Ca(2+) activity < 10 microM. Both kinetic membrane capacitance components were abolished by botulinum neurotoxin B or E treatment, suggesting involvement of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent vesicle fusion. The rapid but not the slow component was inhibited by CAPS antibody. These results were further clarified by immunocytochemical studies that revealed that CAPS was present on only a subset of dense-core vesicles. Overall, the results indicate that dense-core vesicle exocytosis in melanotrophs occurs by two parallel pathways. The faster pathway exhibits high sensitivity to Ca(2+) and requires the presence of CAPS, which appears to act at a late stage in the secretory pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resident CAPS on dense-core vesicles docks and primes vesicles for fusion

The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-ve...

متن کامل

Drosophila CAPS Is an Essential Gene that Regulates Dense-Core Vesicle Release and Synaptic Vesicle Fusion

Calcium-activated protein for secretion (CAPS) is proposed to play an essential role in Ca2+-regulated dense-core vesicle exocytosis in vertebrate neuroendocrine cells. Here we report the cloning, mutation, and characterization of the Drosophila ortholog (dCAPS). Null dCAPS mutants display locomotory deficits and complete embryonic lethality. The mutant NMJ reveals a 50% loss in evoked glutamat...

متن کامل

UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans.

Previous studies indicated that CAPS (calcium-dependent activator protein for secretion) functions as an essential component for the Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells. However, recent mouse knock-out studies suggested an alternative role in the vesicular uptake or storage of catecholamines. To genetically assess the functional role of CAPS, we characterize...

متن کامل

Munc13 homology domain-1 in CAPS/UNC31 mediates SNARE binding required for priming vesicle exocytosis.

Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex ass...

متن کامل

CAPS Acts at a Prefusion Step in Dense-Core Vesicle Exocytosis as a PIP2 Binding Protein

CAPS-1 is required for Ca2+-triggered fusion of dense-core vesicles with the plasma membrane, but its site of action and mechanism are unknown. We analyzed the kinetics of Ca2+-triggered exocytosis reconstituted in permeable PC12 cells. CAPS-1 increased the initial rate of Ca2+-triggered vesicle exocytosis by acting at a rate-limiting, Ca2+-dependent prefusion step. CAPS-1 activity depended upo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 10  شماره 

صفحات  -

تاریخ انتشار 2000